On certain proximities and preorderings on the transposition hypergroups of linear first-order partial differential operators
نویسندگان
چکیده
The contribution aims to create hypergroups of linear first-order partial differential operators with proximities, one of which creates a tolerance semigroup on the power set of the mentioned differential operators. Constructions of investigated hypergroups are based on the so called “Ends-Lemma” applied on ordered groups of differnetial operators. Moreover, there is also obtained a regularly preordered transpositions hypergroup of considered partial differntial operators.
منابع مشابه
Actions of Join Spaces of Continuous Functions on Hypergroups of Second-Order Linear Differential Operators
One from classical constructions of algebraic binary hyperstructures (semihypergroups and hypergroups) from ordered algebraic systems is based on a certain Lemma on principal ends generated by products of pairs of elements – shortly termed as Ends-Lemma. First version of this auxiliary lemma was obtained in the monography [3]. The mentioned lemma is applied not only in case of hyperstructures c...
متن کاملSolution to time fractional generalized KdV of order 2q+1 and system of space fractional PDEs
Abstract. In this work, it has been shown that the combined use of exponential operators and integral transforms provides a powerful tool to solve time fractional generalized KdV of order 2q+1 and certain fractional PDEs. It is shown that exponential operators are an effective method for solving certain fractional linear equations with non-constant coefficients. It may be concluded that the com...
متن کاملOn the Algebraic Structure of Transposition Hypergroups with Idempotent Identity
This paper studies the algebraic structure of transposition hypergroups with idempotent identity. Their subhypergroups and their properties are examined. Right, left and double cosets are defined through symmetric subhypergroups and their properties are studied. Further- more, this paper examines the homomorphisms, the behaviour of attrac- tive and non-attractive elements through them, as well ...
متن کاملSymmetry group, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation
In this paper Lie point symmetries, Hamiltonian equations and conservation laws of general three-dimensional anisotropic non-linear sourceless heat transfer equation are investigated. First of all Lie symmetries are obtained by using the general method based on invariance condition of a system of differential equations under a prolonged vector field. Then the structure of symmetry ...
متن کاملImage Zooming using Non-linear Partial Differential Equation
The main issue in any image zooming techniques is to preserve the structure of the zoomed image. The zoomed image may suffer from the discontinuities in the soft regions and edges; it may contain artifacts, such as image blurring and blocky, and staircase effects. This paper presents a novel image zooming technique using Partial Differential Equations (PDEs). It combines a non-linear Fourth-ord...
متن کامل